References:

  1. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-42.
  2. Wang J, Li Y, Musch DC, et al. Progression of myopia in school-aged children after COVID-19 home confinement. JAMA Ophthalmol. 2021;139(3):293-300.
  3. GBD 2019 Blindness and Vision Impairment Collaborators. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. The Lancet. 2020;9(2):E144-E160.
  4. Ha A, Kim CK, Shim SR, Chang IB, Kim YK. Degree of myopia and glaucoma risk: A dose-response meta-analysis. Am Journal of Ophthalmol. 2022;236:107-119.
  5. Grodum K, Heijl A, Bengtsson B. Refractive error and glaucoma. Acta Ophthalmologica Scandinavica. 2001; 79(6): 560-566.
  6. Schuman JS. Optical coherence tomography in high myopia. JAMA Ophthalmol. 2016;134(9):1040.
  7. Leung CKS, Yu M, Weinreb R, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: Interpreting the RNFL Maps in healthy myopic eyes. IOVS. 2012; 53(11):7194-7200.
  8. Hood DC. Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog Retin Eye Res. 2017;57:46-75.
  9. Fechtner R. Review of normative database construction in available OCT models. World Glaucoma Congress. www.fda.gov/media/84165/download. 2013. Vancouver, Canada. Accessed January 1, 2022.
  10. Biswas S, Lin C, Leung CKS. Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness. JAMA Ophthalmol. 2016;134(9):1032-1039.
  11. Hood DC, Raza AS. On improving the use of oct imaging for detecting glaucomatous damage. Br J Ophthalmol. 2014;98(Suppl 2):ii1-9.
  12. Broadway DC. Visual field testing for glaucoma – a practical guide. Community Eye Health. 2021;25(79-80): 66-70.
  13. Lee J, Park CK, Jung KI. Characteristics of progressive temporal visual field defects in patients with myopia. Scientific Reports. 2021;11: Article number: 9385.
  14. Ding X et al. Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study. Br J Ophthalmol. 2016;100(12): 1697-1702.
  15. Lanca C et al. Visual field defects and myopic macular degeneration in Singapore adults with high myopia. British Journal of Ophthalmology. 2021.
  16. Lee KM, Kim TW, Lee EJ, et al. Association of corneal hysteresis with lamina cribrosa curvature in primary open angle glaucoma. IOVS. 2019;60(13):4171-77.
  17. Medeiros FA, Meira-Freitas D, Lisbosa R, et al. corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120(8):1533-40.
  18. Radcliffe NM. Hysteresis: A powerful tool for glaucoma care. Review of Ophthalmology. January 6, 2014.
  19. Mosaed M, Liu JHK, Weinreb R. Correlation between office and peak nocturnal intraocular pressures in healthy subjects
    and glaucoma patients. American Journal of Ophthalmology. 2005; 139(2): P320-P324.
  20. Jonas JB, Weber P, Nagaoka N, Ohno-Matsui K. Glaucoma in high myopia and parapapillary delta zone. PLoS One. 2017;12(4):e0175120.

 

Acknowledgments:

SUNY’s Dr. Madonna, Dr. Laul and Dr. Sherman were consulted for various aspects of this RR.